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Higher Order Generation of Exactly Solvable
Supersymmetric Systems

Cao Xuan Chuan1
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Starting from an exactly solvable potential, it is shown that it is always possible
to construct an infinite set of higher order generation supersymmetri c systems
which are also exactly solvable. A method of deriving these potentials is presented
and the corresponding eigenfunctions and eigenspectra are discussed. The theory
is illustrated with an example in which the first- and second-order generation
systems are considered.

1. INTRODUCTION

In a previous paper [1] it was established that if a potential V (x) defined

in a certain domain D is exactly solvable, that is, if the whole set of eigenfunc-

tions and eigenvalues of the SchroÈ dinger equation can be obtained by algebraic

means, then it is always possible, relative to any state | n & , to construct another

V (n) defined in a domain Dn which also is exactly solvable.

In that work it was also hinted that extension to higher order generation

potentials V (n,m,...) involving more than one state is possible. The purpose of

the present paper is to complete these hints by examining the problem from

a more general point of view.

To facilitate the transition from earlier works we begin with a brief

review of some essential features of the technique used in ref. 1 which will

be needed below, adopting the same notations. However, the growing degree

of complexity in the ensuing discussion requires better and more concise

forms of notations; the improvements will gradually be added and explained

as necessary.
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2. FORMULATION

Consider the matrix differential equation

f 8 1 F f 5 0; f 5 ( f 1, f 2)
+; F 5 1 u1 d1

0 u2 2 (1)

u1, u2, d1 in principle may be any analytic functions. The system (1) can be

conveniently be dealt with (see ref. 1) by use of the ª mixing functionº

defined by

f 1, n 5 2 Xn f 2 (2)

It can be shown that if this function is solution of the second-order differen-
tial equation

X 9n 2 2u2X 8n 1 [(u 2
2 2 u 82) 2 (u 2

1 2 u 81) 2 En]Xn 5 0 (3)

then the first component f 1 of the system (1) is an eigenfunction of the

SchroÈ dinger equation corresponding to the excited state | n & and eigenvalue En:

f 91, n 2 [u 2
1 2 u 81] f 1, n 5 En f 1, n (4)

On the other hand, if u1 5 u2 5 u, then u (x) can be considered as the

superpotential in SU(2) from which a couple of ª partner potentialsº can

be inferred

V 7 5 u 2 7 u8

Supersymmetry preserves the double degeneracy of the eigenspectra while

the eigenfunctions f 1,n, f 1,n corresponding to V 2 , V + up to a constant of

normalization are given by

f 1, n . 2 Xne
2 * udx; f 1, n . 2 X 8ne

2 * udx (5)

The ladder operator L 7 5 d /d 2 7 u (x) as well as the SUSY Hamiltonians

H1 5 A 2 A + and H2 5 A +A 2 must satisfy the following commutation and

anticommutation rules:

1

2
{A 2 , A +} 5

d 2

dx2 2 u 2 (6)

1

2
[A 2 , A +] 5 u8

3. SINGLE-BASE SYSTEMS

From now on, and for simplicity, the first-order generation potential V (n)

which is constructed from the state (base) | n & will be referred to as the single-
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base potential. The mixing function corresponding to this potential will be

denoted by X (n) (in place of the former Xn); the reason for this choice will

be appreciated below when the discussion extends to the case of multibase
systems. For the single-base case, the superpotential is defined as

v (n) 5 u 2
X (n)8

X (n)

and the matrix differential equations become

f (n)8 1 F (n) f (n) 5 0; f (n) 5 ( f (n)
1 , f (n)

2 )+; F (n) 5 1 v
(n) d (n)

1

0 v (n) 2 (18)

Using the same procedure, if the eigenfunction f (n)
1, m corresponds to the | m &

state in this base,

f (n)
1, m 5 2 X (n)

m f (n)
2

Exact solvability of the potential V (n) 2 means that the function X (m)
m must be

a solution of the second-order differential equation

X (n)9
m 2 2v (n)X (n)8

m 2 A (n)
m X (n)

m 5 0 (8)

which is exactly solvable. The solutions are

X (n)
m 5

X (m)

X (n) , A (n)
m 5 Em 2 En (m $ n) (9)

The SchroÈ dinger equation corresponding to the first component is then

f (n)9
1, m 2 V (n) 2 f (n)

2, m 5 A (n)
m f (n)

(10)
f (n)

1, m . 2 X (n)
m e 2 * udx

The analytical form of the second component V (n) 1 of the couple V (n) 6 is

given by

V (n) 1 5 u 2 1 u8 1 2
X (n)8

X (n) F X (n)

X (n) 2 2u G 2 En (11)

and is defined in the domain D(n). The corresponding mixing function X (n)
m

is a solution of the equation

X (n)9
m 2 2v (n)X (n)8

m 2 [2v (n)8 1 A (n)
m ]X (n)

m 5 0 (12)

which also is exactly solvable:

X (n)
m 5 X (n)8

m (13)
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X (n)
m is given in (9). Therefore the eigenfunction of V (n) 1 is

f (n)
1, m . 1 X

(m)

X (n) 2 8X (n) e 2 * udx (m . n) (14)

These are essentially the main results presented in ref. 1 and may be completed

with the following remarks.

(a) The ladder operators from which the SUSY Hamiltonians H (n)
1 5

L (n) 2 A (n) 1 , H (n)
2 5 A(n) 1 A (n) 2 are constructed must satisfy the commutation

and anticommutation rules

A(n) 7 5
d

dx
7 v (n);

1

2
{A (n) 2 , A(n) 1 } 5

d 2

dx 2 2 F u 2 1
X (n)8

X (n) 1 X
(n)8

X (n) 2 2u 2 G
1

2
[A(n) 2 , A(n) 1 ] 5 u 8 2

X (n)8

X (n) 1 X
(n)8

X (n) 2 2u 2 2 En (68)

which can be compared with (6).
(b) Concerning the first component V (n) 2 , note that for any chosen state

(base) | n . , we always have

V (n) 2 5 V 2 1 const (15)

which means that this component does not bring anything new to the pres-

ent problem.

(c) The second component V (n) 1 given by (11) is more interesting and

may lead to the construction of new exactly solvable potentials (see also ref. 3).

(d) From the theoretical point of view, the special case m 5 n is interesting
since it can be interpreted as representing the ª ground stateº of the first

component V (n) 2 with eigenvalue An
n 5 0. However, this ª ground stateº cannot

be defined for the second component V (n) 1 [see relation (13)], so that the

eigenspectra of the two components are not strictly degenerate. In other

words, this remark means that, regardless of the nature of the symmetry

(nonbroken or broken symmetry) of the ª parentº couple V 7 , the present
construction always leads to systems with broken symmetry.

4. ISOSPECTRALITY

In order to go a step further in dealing with a multibase-system theory,

it would be convenient to proceed through an intermediate stage concerning
the isospectrality of the former single-base system. In fact, relative to each

couple V (n) 7 , it is possible to construct a family of potentials V (n, m ) 7 ( m is

an arbitrary constant) isospectral to it, that is, potentials which may sustain

the same eigenspectra.
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Isospectrality can be approached with the C transformation technique

discussed in ref. 4.

According to this technique, the superpotential is defined by

v (n, m ) 5 v (n) 7
c8

c

where c (x, m ) is in principle an unknown function. Isospectrality imposes

the constraint

v (n, m )2 7 v (n, m )8 5 v (n)2 7 v (n)8

Taking the minus sign, for instance, it can be seen that this function c(x, m )

must be a solution of the equation

c9 2 2v (n, m )c8 5 0 (16)

In solving (16) and noting that the second component f (n, m )
2 in the system

similar to (1) can be written as f (n, m )
2 . exp[ 2 * v (n, m ) dx | , we have

C (x) 5 * | f (n, m )
2 | 2 2dx 1 m (17)

which is defined in a domain D (n, m ).

Therefore the couple V (n, m ) 7 must depend on the choice of the constant
of integration m . Their exact solvability can be shown by using the same

reasoning as above. In particular, the two mixing functions X (n, m ) and X (n, m )

corresponding to the couple must be a solution of the equations

X (n, m )9
m 2 2v (n, m )X (n, m )8

m 2 A (n)
m X (n, m )

m 5 0 (18)

X (n, m )9
m 2 2v (n, m )X (n, m )8

m 2 | 2v (n, m )8 1 A(n)
m | X (n, m )

m 5 0 (19)

The solution of the first one is

X (n, m )
m 5

X (n)
m

C (x)

c (x) given by (17), and the eigenfunction pertaining to V (n, m ) 2 is simply

f (n, m )
m . 2 X (n, m )

m f (n, m )
2 (20)

The solution of the second one is simply X (n, m ) 5 X (n, m )8 and the eigenfunction

corresponding to V (n, m ) 1 can be written as

f (n, m )
m . 2 X (n, m )

m f (n, m )
2 (21)
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Remarks. (a) It can be verified that

V (n, m ) 2 5 V 2 1 En

which means independence in the choice of the parameter m for the first

component of the couple
(b) The analytical form of the second component V (n, m ) 1 is

V (n, m ) 1 5 u 2 1 u8 1 2
X (n)8

X (n) F X (n)8

X (n) 2 2u G
1 2

C(x, m )

C(x, m ) F C(x, m )

C(x, m )
1 2

X (n)8

X (n) 2 2u G (22)

which obviously depends on the choice of m . Its eigenfunction is, after (21),

f (n, m )
m . 2 X (n, m )

m X (n)C(x, m )e 2 * udx (23)

(c) In the case where isospectrality is not required, the function c (x)

will not be subject to the constraint (16), so that other choices are equally

possible. For example:

(c1) If c (x) 5 X (n), with X (n) being the mixing function given in (8), then

this approach reduces to the case of the single-base system discussed above.
(c2) On the other hand, if c (x) 5 f n , with f n being one of the eigenfunc-

tions of V 2 , then this method will lead ultimately to the formulation found

in ref. 3.

This explains why the two cases (c1) and (c2) must yield equivalent

results.

5. THE DOUBLE-BASE SYSTEMS

Now we consider what happens when one wishes to include more than
one base in the formulation.

According to the preceding discussion, this will obviously depend on

the right choice of the function c (x). We consider two significant cases, case

A and case B (although from a more general point of view, it can be expected

that this number will not necessarily be limited to two; this aspect is under
investigation).

Case A. Recall that for the case of a single base, the mixing function

was denoted by X (n)
m implying the following meaning: the upper index (n)

refers to the chosen base | n & , while the second one m indicates the order of

the excited state | m & (s . m . n, etc.).
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In the case of a double-base system it will therefore be natural to denote

the mixing function as X (n,m)
s in which (n, m) correspond respectively to the

first and second bases | n & and | m & and s to the excited state (s . m . n).
The superpotential in Case A involves two quantities: [c(x) 5 X (n,m)]

Av(n, m) 5 v (n) 2
X (n,m)8

X (n,m) (24)

v(n) corresponds to the superpotential of the preceding (first) system, while

the second term involves the mixing function of the double base X (n,m). From

(9) we already know that X (n,m) 5 X (m)/X(n), which can always be determined

since the ª parentº potential is assumed to be exactly solvable.

Following the same procedure, it can be verified that this mixing function

X (n,m)
s must be a solution of the second-order differential equation

X (n,m)9
s 2 2A v (n,m)X (n,m)8

s 2 A(n,m)
s X (n,m)

s 5 0 (25)

which is exactly solvable with the solution

X (n,m)
s 5

X (n,s)

X (n,m) ; A (n,m)
s 5 Es 2 Em (26)

From the superpotential Av (n,m), the two partner potentials AV (n,m) 7 can be

inferred,

AV (n,m) 7 5 Av (n,m)2 7 Av (n,m)8

Making use of (25), we have

AV (n,m) 2 5 u 2 2 u8 1 Em

AV (n,m) 1 5 u 2 1 u8 1 2 F X (n)8

X (n) 1
X (n,m)8

X (n,m) G F X (n)8

X (n) 1
X (n,m)8

X (n,m) 2 2u G 2 En (27)

Discussion. (a) For the first member AV (n,m) 2 of the couple we always

have the property

AV (n,m) 2 5 V 2 1 Em (28)

Em is a constant depending on the choice of the bases.
(b) For the second member AV (n,m) 1 , by definition, we have

X (n,m)8

X (n,m) 5
X (m)8

X (m) 2
X (n)8

X (n)

so that (27) leads to the following second property:

AV (n,m) 1 5 V (m) 1 , m . n (29)
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As | n & and | m & are chosen arbitrarily, Case A in fact does not bring anything

new in the theory. Note also that the relation (27) has already been discussed

in ref. 1, but with the use of a slightly different type of notation. However,
it may become useful in quasi-exactly solvable problems, which will be

discussed later in a more appropriate context.

Case B. The choice for this case is c(x) 5 X (n,m), with X (n,m) given by
(12) [X (n,m) 5 X (n,m)8, X (n,m) is a solution of equation (8)].

The construction of the corresponding superpotential Bv(n,m) follows as

in Case A, that is,

Bv (n,m) 5 v (n) 2
X (n,m)8

X (n,m)

from which the two partner potentials BV (n,m) 7 can be inferred,

BV (n,m) 7 5 Bv (n,m)2 7 Bv (n,m)8

Exact solvability of these potentials can be proven by returning to the
original system of matrix equation similar to (1); for instance, with the

first member

B f (n,m)8 1 BF (n,m) B f (n,m) 5 0;

B f (n,m) 5 (B f (n,m)
1 , B f (n,m)

2 )+; BF (n,m) 5 1
BV (n,m)

0

B f (n,m)
1

BV (n,m) 2
with the corresponding mixing function BX (n,m) defined by (the index B is
included to avoid any confusion with Case A)

B f (n,m)
1, s . 2 BX (n,m)

s
B f (n,m)

2 (30)

This mixing function must be a solution of the equation

BX (n,m)9
s 2 2Bv (n,m) BX (n,m)

s 2 A(n,m)
s

BX (n,m)
s 5 0 (31)

which is exactly solvable.

The solutions are

BX (n,m)
s 5

X (n,s)

X (n,m) , A(n,m)
s 5 Es 2 Em (32)

Its eigenfunction can be written after simplifications as

B f (n,m)
1, s . 2 1 X

(s)

X (n) 2 8X (n)e 2 * udx (s . m . n) (33)
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Note the following property:

BV (n,m) 2 5 V (n) 1 1 Const (34)

which, in some sense, may express the ª shape invarianceº character of the
couple BV (n,m) 2 , V (n) 1 (it must not be confused with the concept of shape

invariance in the sense of Gedenshtein [5]).

Concerning the second member BV (n,m) 1 , this matrix equation becomes

B f (n,m)8 1 BF (n,m) B f (n,m) 5 0;

B f (n,m) 5 (B f (n,m)
1 , B f (n,m)

2 )+; BF (n,m) 5 1 2
Bv (n,m)

0

Bd (n,m)
1

BV (n,m) 2
with the mixing function BX (n,m)

B f (n,m)
1, s 5 2 BX (n,m)

s
B f (n,m)

2

which must be a solution of the following equation:

BX (n,m)
s 2 2Bv (n,m) BX (n,m)8

s 2 [2Bv (n,m)8 1 A (n,m)
s ] BX (n,m)

s 5 0 (35)

Obviously,

BX (n,m)
s 5 BX (n,m)8

s

so that the analytical form of BV (n,m) 1 is

BV (n,m) 1 5 v (n)2 2 v (n)8 1 2
BX (n,m)8

BX (n,m) F BX (n,m)8

BX (n,m) 1 2
X (n)8

X (n) 2 2u G 2 A (n,m) (36)

After simplification and using (35), the analytical form of the eigenfunc-

tions can be found:

B f (n,m)
1, s . 2 1 (x (s) /x (n))8

(x (m) /x (n))8 2 8 1 x
(m)

x (n) 2 8x (n)e 2 * udx (37)

An example is given in the Appendix that tests the above results.

The method can be extended to the more general case of Nth-order

generation (or N multiple bases), but at the cost of a rapidly growing complex-

ity. For instance, with the third-order generation one has superpotentials of

type V (n,m,s). Since in the preceding generation there are two superpotentials
AV (n,m) and BV (n,m) we have four possibilities to construct V (n,m,s) 6 , which in
turn lead to four couple of exactly solvable potentials.

More generally, corresponding to the Nth generation, there will be 2N

or 2N 1 1 such potentials. This number is reduced, however, with constraints

of type (15), (28), or (34).
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The main results presented in this work are summarized as follows:

x For the single-base system (first-order generation) the method con-

firms the point of view discussed in our previous paper [1] as well
as work by other authors.

x Coupled with the ª C transformationº technique, this method enables

one to construct the family of potentials isospectral to the one corres-

ponding to this single-base system [see (22)].

x Extension to multibase systems is possible, leading to the construction

of new types of exactly solvable potentials [see (37)].

APPENDIX

In order to illustrate the theory, it is appropriate to begin with an example

simple enough from the mathematical point of view that the interested reader

can directly verify the mechanism of construction of the results and test the

consistency of the method. The other, more elaborate examples have also

been worked out and will be presented in subsequent papers.

The square-well potential with infinite wall, which usually serves to
simulate a model of confinement in physics, will be defined as

V (x) 5 0, 0 , x , p , D: (0, p )

V (x) 5 ` , x , 0; x . p

The system (1) corresponds to the case u1 5 u2 5 0. The solutions are

f 1, n . sin nx, | En | 5 m 2, n 5 1, 2, 3, . . .

A1. Single-Base System

Here we test the results (11), (14), and (15). Assume n 5 1, so that

V (1) 2 5 2 1, V (1) 1 5 2 1 1
2

sin2
x

The eigenfunctions and eigenvalues are as follows:

m f
Å

(1)
1, m | E (1)

m |

2 2 sin2x 3

3 8 sin2x cos x 8

4 4 sin2x [ 2 1 1 6 cos2x] 15
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For n 5 2

V (2) 2 5 2 4, V (2) 1 5 2 4 1
8

sin2 2x

and we have the following results:

sin2x F 5 cos x 1
sin2x

cos x G3 5

4 4 sin22x 12

5 cos x 2
2 sin 5x cos2x

sin2x
5 21

Remarks. (a) Regardless of the choice of the base | n & , the first components
V (n) 2 are similar and represent the original square well, but what is changed

is the ª bottomº of this well.

(b) However, the second component behaves quite differently according

to the choice of the base and becomes a non-square-well potential. For

instance, its domain is (0, p ) for n 5 1, but for n 5 2 it becomes a double

well separated by an infinite wall at p /2.

A2. Single-Base Isospectrality

Here we test the results (21) and (22).

As the constant of integration m is arbitrary, the simplest choice would

be m 5 0;

c (x, 0)8

c (x, 0)
5 2

2

sin2x

Therefore, for n 5 1,

V (1,0) 1 5 2 1 1
2

cos2x

and we have the following results:

2 2 cos2x 3

3 3 cos3x 2 tanx sin 3x 8

A3. Double-Base Systems

Here we test the results (36) and (37) with the conditions n 5 1 and

m 5 2. Thus



756 Cao

BV (1,2) 2 5 2 4 1
2

sin2x
; BV (1,2) 1 5 2 4 1

6

sin2x

and we have:

s B f (1,2)
1, s | E (1,2)

s |

3 8 sin3x 5

4 48 sin3x cos x 12

5 24 sin3x [7 cos2x 2 sin2x] 21

Remarks. (a) Note that BV (1,2) 2 5 V (1) 1 2 3, which confirms (34).

(b) For the present special case, consider the case n 5 1, m 5 3, so that

BV (1,3) 1 5 2 16 1
8

sin22x
1

4

sin2x
5 V (1) 1 1 V (2) 1 2 11

This result constitutes a still scarce but nontrivial example in quantum
mechanics where the combination of two exactly solvable potentials (V (1) 1

and V (2) 1 ) may lead to another potential (BV (1,3) 1 which itself is also

exactly solvable.
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